Toralf Peymann, Carolyn B. Knobler, and M. Frederick Hawthorne*

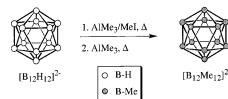
Department of Chemistry and Biochemistry University of California, Los Angeles 405 Hilgard Avenue Los Angeles, California 90095-1569

Received March 18, 1999

The quest for globular structures possessing both hydrophobic surfaces and extraordinary kinetic stability stems from the search for novel modules with which to synthesize supramolecular structures,¹ weakly coordinating anions,² and space-controlling drug components.³ The fullerenes, characterized by unique chemistry and physical properties, represent one family of such precursors.⁴ Another family of globular hydrophobes, described by us as "camouflaged" carboranes,⁵ has been described.^{6,7} These species may approach the van der Waals diameter of C₆₀ by attachment of methyl groups and functionalized methyl substituents to the icosahedral scaffolding of the aromatic [*closo*-C_nB_{12-n}H₁₂]ⁿ⁻² (n = 0-2). Whereas hydrophobic and amphiphilic derivatives of this sort are known with n = 1 and 2, the fully methylated derivative of the parent species, dodecamethyl-*closo*-dodecaborate(2-), **1** (n = 0), is now reported for the first time.

Here we describe a new permethylation technique for icosahedral *closo*-boranes employing trimethylaluminum and methyl iodide in the absence of a solvent (Scheme 1). This method produced **1** when applied to the parent anion of the polyhedral borane family, aromatic [*closo*-B₁₂H₁₂]²⁻, **2**. The anion **1** was characterized by ¹H and ¹¹B NMR spectroscopy, high-resolution fast atom bombardment (FAB) mass spectrometry, cyclic voltammetry, and single-crystal X-ray diffraction.

Applying two electrophilic permethylation techniques employed for carboranes^{5–7} to $[N(n-Bu)_4]_22$ resulted in partial triflation (using methyl trifluoromethanesulfonate) or halogenation (using aluminum chloride/methyl iodide). However, a solution of **2**, trimethylaluminum, and methyl iodide kept at 45 °C for 1 day led to various polyiodinated species $[closo-B_{12}Me_{12-x}I_x]^{2-}$ ($x \le$ 5). Additional heating of the suspension for 5 days gave **1** and $[closo-B_{12}Me_{11}I]^{2-}$, **3**. This mixture was isolated and again heated at the reflux temperature in neat trimethylaluminum to convert the byproduct **3** into **1**.


Apparently, the iodine atoms of the B–I vertexes are successively exchanged by methyl groups when the species $[closo-B_{12}-Me_{12-x}I_x]^{2-}$ ($x \le 5$) are heated in trimethylaluminum. To verify this hypothesis, the monoiodinated anion $[closo-B_{12}H_{11}I]^{2-}$, **4**, was heated to reflux in neat trimethylaluminum, and $[closo-B_{12}H_{11}-(CH_3)]^{2-}$, **5**, was obtained in 55% yield. This procedure provides an alternate route to monoalkylated $[closo-B_{12}H_{11}R]^{2-}$ anions, which are usually obtained through palladium-catalyzed alkylation

- (4) Hirsch, A. The Chemistry of the Fullerenes, G. Thieme Verlag: Stuttgart, New York, 1994.
- (5) Jiang, W.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1332–1334.
- (6) King, B. T.; Janousek, Z.; Grüner, B.; Trammell, M.; Noll, B. C.; Michl, J. J. Am. Chem. Soc. **1996**, *118*, 3313–3314.

(7) Herzog, A.; Maderna, A.; Harakas, G. N.; Knobler, C. B.; Hawthorne, M. F. *Chem. Eur. J.* **1999**, *5*, 1212–1217.

Figure 1. Molecular structure of the dodecamethyl-*closo*-dodecaborate-(2-) anion 1 (thermal ellipsoids represent a 30% probability level). Selected bond distances (pm) of the anion: B-B = 174(11)-181(11); B-C = 159(11)-170(11).

of **4** with Grignard reagents.⁸ No reaction was observed when $[PPh_4]_2[closo-B_{12}I_{12}]$ was heated for 4 days in neat trimethylaluminum at the reflux temperature.

The NMR data pertaining to 1 (¹¹B NMR: singlet at -10.8 ppm, ¹H NMR: broad singlet at -0.48 ppm) are in accordance with its symmetry (point group I_h). Because of the quadrupole moment of the boron nucleus, a ¹³C NMR resonance for the B-CH₃ carbon atoms of 1 is not observed. High-resolution FAB mass spectrometry confirms the mass of the permethylated derivative 1 (centered at m/z = 310.4020 with the correct isotopic distribution). The cyclic voltammogram of [Et₄N]₂1 (100 mM Et₄-NPF₆, Ag/AgCl, acetonitrile) shows a reversible one-electron oxidation process [*closo*-B₁₂(CH₃)₁₂]²⁻/[*closo*-B₁₂(CH₃)₁₂]⁻ at $E_{1/2} = 0.41$ V. The dinegative species 1 is more easily oxidized than the monoanion [*closo*-CB₁₁(CH₃)₁₂]⁻ ($E_{pa} = 1.6$ V).⁶

Blood-red single crystals of $[(C_5H_5N)_2CH_2]1$ -CH₃CN were obtained from acetonitrile/ethanol.⁹ The crystal structure of **1** (Figure 1) confirms the permethylation of the B₁₂ icosahedron with some distortion of its icosahedral geometry. The B–B bond lengths of **1** [174(1)–181(1) pm] are similar to those of the unsubstituted anion **2** [175.5(7)–178.0(7) pm].¹⁰ The B–C bond distances of **1** [159(1)–170(1) pm] are longer than the B–C bond of **5** [158(2) pm]⁸ and the exo B–C bonds of [*closo*-CB₁₁-(CH₃)₁₂]⁻ [159(2)–160.1(6) pm]⁶ and *closo*-1,12-C₂B₁₀(CH₃)₁₂ [158.3(6) pm].⁵ The red color of [(C₃H₅N)₂CH₂]**1** is apparently due to a charge-transfer interaction of the anion **1** with the pyridinium rings of the dipositive cation. The plane through the triangle B1, B4, and B5 is nearly parallel to the plane established by a pyridinium ring N1 and C2–C6. The angle between the

10.1021/ja990884q CCC: \$18.00 © 1999 American Chemical Society Published on Web 05/29/1999

⁽¹⁾ Lehn, J.-M. Supramolecular Chemistry, VCH: Weinheim, New York, 1995.

⁽²⁾ Strauss, S. H. Chem. Rev. 1993, 93, 927-942.

⁽³⁾ Friedmann, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. **1993**, 115, 6506–6509.

⁽⁸⁾ Peymann, T.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1998, 37, 1544–1548.

⁽⁹⁾ Crystal data for $[(C_5H_5N)_2CH_2]$ **1**·CH₃CN: blood-red; orthorhombic; $Pc2_1n, a = 971.5(7)$ pm, b = 1505(11) pm, c = 2282(2) pm; Z = 4; $R = 0.074, R_w = 0.184$; GOF = 1.04.

⁽¹⁰⁾ Wunderlich, J. A.; Lipscomb, W. N. J. Am. Chem. Soc. 1960, 82, 4427-4428.

normals of these two planes is 7.3° . The distances of the boron atoms B1, B4, and B5 from the latter plane are 508(1), 486(1), and 504(1) pm, respectively; the distances of the methyl carbon atoms C1M, C4M, and C5M are 389(1), 338(1), and 378(1) pm, respectively.

The longest across-cage methyl carbon-methyl carbon distances of **1** average 668 pm; the corresponding maximum methyl hydrogen-methyl hydrogen distance is 761 pm compared to 707 pm for C_{60} .¹¹ This property coupled with water solubility should provide a novel prosthetic group for drug design. Preliminary results indicate that the permethylated dianion **1** may be oxidized in a fashion analogous to that of the monocarborane monoanion¹²

(11) Liu, S.; Lu, Y.; Kappes, M. M.; Ibers, J. A. *Science* **1991**, *254*, 408–410.

(12) King, B. T.; Noll, B. C.; McKinley, A. J.; Michl, J. J. Am. Chem. Soc. **1996**, *118*, 10902–10903.

 $[closo-CB_{11}(CH_3)_{12}]^-$ to give the radical $\{[closo-B_{12}(CH_3)_{12}]^+\}^{-.13}$ We are currently investigating the permethylation of other polyhedral borane anions and exploring the organic chemistry of the hydrocarbon surface of **1**.

Acknowledgment. The U.S. Department of Energy supported this work, Contract No. DE-FG02-95ER61975.

Supporting Information Available: Synthetic details, 400 MHz ¹H and 160 MHz ¹¹B NMR data of **1**, and X-ray structural information on $[(C_5H_5N)_2CH_2]$ **1**·CH₃CN (PDF). An X-ray crystallographic file, in CIF format, is available through the Internet only. This material is available free of charge via the Internet at http://pubs.acs.org.

JA990884Q

(13) The radical monoanion $\{[closo-B_{12}(CH_3)_{12}]^*\}^-$ was observed under FAB conditions as the parent molecular ion of 1.